Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Soil Hydromechanical Memory

1. Critical Zone as Atmosphere-Solid Earth Gate.

The soil hydromechanical structure has a major control on how water flows through the soils to replenish the subsurface of groundwater, evaporate to bring moisture back to the lower atmosphere, or blocks water from traveling through soils, leading to erosion and flooding. Plants, animals, geomorphological, weathering, and tectonic processes alter dynamically the soil structure, which challenges predictive understanding of the soil’s effect on natural hazards and atmospheric dynamics and justify the need to 1) monitor its state in spate and time, and 2) characterize the governing and coupled processes, so that we can predict hazards today and in the future.

2. Characterizing Soil Properties.

How can we characterize the soil properties?


3. Turning seismic to saturation and water table

Two implementation angles: (A) Distributed Acoustic Sensing (DAS) cross-sections and (B) Regional seismic networks

We aim to estimate two key geohydrologic state variables using time-lapse shear-wave velocity:

  1. Water table depth: dwt(x,t)d_{wt}(x,t) (or hydraulic head h(x,t)h(x,t))

  2. Vadose-zone saturation in the top meter: Sw(x,z,t)S_w(x,z,t) for z[0,1 m]z\in[0,1\ \text{m}]

Inputs

Core idea

We implement a coupled inversion that alternates between:


1) Definitions and conventions

Coordinates

Velocity perturbation

Select a baseline time t0t_0 and define:

Δv(,t)=Vs(,t)Vs(,t0)Vs(,t0).\Delta v(\cdot,t) = \frac{V_s(\cdot,t) - V_s(\cdot,t_0)}{V_s(\cdot,t_0)}.

When only coda time shifts are available, use:

Δtt=Δvv.\frac{\Delta t}{t} = -\frac{\Delta v}{v}.

2) Physical model components

We treat the observed velocity perturbation as a superposition of hydrologic contributions, optionally augmented with correction factors:

ΔvobsΔvsat+Δvpe(+ thermal / other terms if needed),\Delta v_{\text{obs}} \approx \Delta v_{\text{sat}} + \Delta v_{\text{pe}} \quad (+\ \text{thermal / other terms if needed}),

and optionally:

ΔvobsχsatΔvsat+χpeΔvpe.\Delta v_{\text{obs}} \approx \chi_{\text{sat}}\Delta v_{\text{sat}} + \chi_{\text{pe}}\Delta v_{\text{pe}}.

This “physics + correction factor” framing is valuable when rock physics over/underestimates effective-stress transmission or coupling strength.


3) Saturated-zone mapping: dv/vΔhdwtdv/v \rightarrow \Delta h \rightarrow d_{wt}

Assume the hydrologic component in the saturated zone follows a proportionality:

(dvv)hyd=SskβBΔh,\left(\frac{dv}{v}\right)_{\text{hyd}} = -\frac{S_{sk}\,\beta}{B}\,\Delta h,

where:

Thus:

Δh=BSskβeff(dvv)hyd.\Delta h = -\frac{B}{S_{sk}\,\beta_{\text{eff}}}\left(\frac{dv}{v}\right)_{\text{hyd}}.

Optional correction factor If applying a correction (e.g., to handle partial connectivity / attenuation of stress transmission),

βeff=χpeβ,\beta_{\text{eff}} = \chi_{\text{pe}}\,\beta,

with χpe\chi_{\text{pe}} either constant (site-calibrated) or a function of near-surface saturation.

3.2 Robust depth aggregation (DAS cross-section)

Because velocity estimates at a given depth can be noisy, define a saturated-depth mask using the current water table estimate:

Zsat(x,t)={z:z>dwt(x,t)+δ},\mathcal{Z}_{\text{sat}}(x,t) = \{z : z > d_{wt}(x,t) + \delta\},

with a buffer δ\delta (e.g., 0.2–0.5 m) to stay below the capillary fringe.

Compute a robust statistic:

Δvsat(x,t)=medianzZsat[Δv(x,z,t)].\overline{\Delta v}_{\text{sat}}(x,t) = \text{median}_{z\in\mathcal{Z}_{\text{sat}}}\left[\Delta v(x,z,t)\right].

Then:

Δh(x,t)=BSskβeffΔvsat(x,t).\Delta h(x,t)= -\frac{B}{S_{sk}\beta_{\text{eff}}}\overline{\Delta v}_{\text{sat}}(x,t).

3.3 Convert head to water table depth

Let dwt,0(x)d_{wt,0}(x) be the baseline water table depth at t0t_0. Then:

dwt(x,t)=dwt,0(x)Δh(x,t).d_{wt}(x,t)=d_{wt,0}(x)-\Delta h(x,t).

(Head rise Δh>0\Delta h>0 makes the water table shallower.)


4) Vadose-zone mapping in the top meter: VsSwV_s \rightarrow S_w

We use:

Vs=Gρb,V_s = \sqrt{\frac{G}{\rho_b}},

with saturation-dependent bulk density ρb(Sw)\rho_b(S_w) and stiffness GG controlled by an effective pressure PeP_e that accounts for suction and dynamic capillarity.

4.1 Bulk density mixing

ρb(Sw)=(1ϕ)ρs+ϕ(Swρw+(1Sw)ρa),\rho_b(S_w) = (1-\phi)\rho_s + \phi\left(S_w\rho_w + (1-S_w)\rho_a\right),

where:

4.2 Effective saturation and capillary pressure

Define effective saturation:

Se=SwSr1Sr,Se[0,1],S_e = \frac{S_w - S_r}{1 - S_r},\quad S_e\in[0,1],

where SrS_r is residual saturation.

Use a van Genuchten soil-water retention curve:

Pc(Se)=1α(Se1/m1)1/n.P_c(S_e) = \frac{1}{\alpha}\left(S_e^{-1/m}-1\right)^{1/n}.

(α,n,m\alpha,n,m depend on texture and are calibrated from priors/boreholes.)

4.3 Effective pressure including suction and dynamics

Use:

Pe=σpSePc+τdSwdt,P_e = \sigma - p - S_e P_c + \tau \frac{dS_w}{dt},

where:

4.4 Stiffness closure

A stable, commonly used closure is a Hertz–Mindlin-like power law:

G(Pe)=Gref(PePref)nexp,nexp1/3.G(P_e) = G_{\text{ref}}\left(\frac{P_e}{P_{\text{ref}}}\right)^{n_{\text{exp}}},\quad n_{\text{exp}}\approx 1/3.

Clip PeP_e to a small positive value to avoid nonphysical results.

4.5 Forward model

Given SwS_w and S˙w\dot S_w:

Vspred(Sw)=G(Pe(Sw,S˙w))ρb(Sw).V_s^{\text{pred}}(S_w) = \sqrt{\frac{G(P_e(S_w,\dot S_w))}{\rho_b(S_w)}}.

4.6 Inversion for SwS_w (time-recursive)

For each xx, each depth z[0,1 m]z\in[0,1\ \text{m}], and each time step tkt_k:


5) Rainfall as a dynamical prior (stabilization)

Velocity-derived saturation can be noisy; rainfall provides a physically meaningful prior. A minimal “bucket + relaxation” model:

Swprior(tk)=Swprior(tk1)+γP(tk)Swprior(tk1)Sw,fcτdryΔt,S_w^{\text{prior}}(t_k) = S_w^{\text{prior}}(t_{k-1}) + \gamma\,P(t_k) - \frac{S_w^{\text{prior}}(t_{k-1})-S_{w,\text{fc}}}{\tau_{\text{dry}}}\Delta t,

clipped to [Sr,1][S_r,1], where:

Use this prior to:


6) Coupled inversion algorithm (explicit workflow)

Inputs

Iterative scheme (per xx or r\mathbf{r})

  1. Compute Δv\Delta v relative to baseline.

  2. Initialize dwt(0)(t)=dwt,0d_{wt}^{(0)}(t)=d_{wt,0}.

  3. Repeat for i=0,,Niter1i=0,\dots,N_{\text{iter}}-1:

    • (A) Update head / water table

      • compute robust saturated-zone Δvsat(t)\overline{\Delta v}_{\text{sat}}(t)

      • Δh(i)(t)=(B/(Sskβeff))Δvsat(t)\Delta h^{(i)}(t)=-(B/(S_{sk}\beta_{\text{eff}}))\overline{\Delta v}_{\text{sat}}(t)

      • dwt(i+1)(t)=dwt,0Δh(i)(t)d_{wt}^{(i+1)}(t)=d_{wt,0}-\Delta h^{(i)}(t)

    • (B) Update saturation in the top meter

      • for each z1z\le 1 m and time, invert Sw(i+1)(z,t)S_w^{(i+1)}(z,t) from VsV_s

      • enforce Sw=1S_w=1 for zdwt(i+1)(t)z\ge d_{wt}^{(i+1)}(t)

    • Optionally update χpe\chi_{\text{pe}} from shallow SwS_w (if using correction factors).

  4. Output dwt(t)d_{wt}(t) and Sw(z,t)S_w(z,t) (top 1 m).


7) Two angles: DAS cross-section vs regional network

Angle A — DAS cross-section (dense spatiotemporal imaging)

Typical data product

Advantages

Practical pipeline

  1. DAS preprocessing (noise correlation / surface-wave dispersion / inversion) → Vs(x,z,t)V_s(x,z,t)

  2. Choose baseline t0t_0; compute Δv(x,z,t)\Delta v(x,z,t)

  3. Coupled inversion:

    • dwt(x,t)d_{wt}(x,t) from saturated depths (median over z>dwt+δz>d_{wt}+\delta)

    • Sw(x,z1m,t)S_w(x,z\le 1\text{m},t) from vadose physics

  4. Outputs:

    • time-lapse cross-sections: VsV_s, Δv\Delta v, and dwtd_{wt} overlay

    • shallow saturation panels

    • event response to storms

Recommended regularization


Angle B — Regional seismic networks (distributed stations, larger scale)

Typical data products

What changes

Regional inversion approach

  1. Compute regional dv/v(r,t)dv/v(\mathbf{r},t) maps (or station-pair measurements + kernel weights).

  2. Use rainfall P(r,t)P(\mathbf{r},t) and a bucket model to build a prior for shallow saturation.

  3. Use a simplified two-component model:

    Δvobs(r,t)a(r)Δh(r,t)+b(r)ΔSw(r,t),\Delta v_{\text{obs}}(\mathbf{r},t) \approx a(\mathbf{r})\,\Delta h(\mathbf{r},t) + b(\mathbf{r})\,\Delta \overline{S_w}(\mathbf{r},t),

    where a,ba,b are calibration coefficients informed by local geology/priors.

  4. Convert Δhdwt\Delta h \rightarrow d_{wt} using baseline constraints (boreholes / hydrologic models).

  5. Validate with independent data: groundwater wells, soil moisture products, streamflow, evapotranspiration.

Key distinction vs DAS


8) Calibration strategy (what must be anchored)

Essential calibrations


9) Diagnostics and sanity checks

For water table

For saturation

For model mismatch


10) Suggested student/postdoc exercises

  1. Synthetic test (DAS)

    • Choose a truth dwt(x,t)d_{wt}(x,t) and Sw(x,z,t)S_w(x,z,t).

    • Forward simulate VsV_s.

    • Invert and quantify error sensitivity to noise and parameter misspecification.

  2. Storm event analysis

    • Identify storm windows.

    • Compare inferred dwtd_{wt} and top-meter SwS_w responses:

      • lag time

      • peak magnitude

      • recovery timescale

  3. Regional upscaling

    • Using a regional dv/v(r,t)dv/v(\mathbf{r},t), invert for two latent time series:

      • Δh(r,t)\Delta h(\mathbf{r},t)

      • Sw(r,t)\overline{S_w}(\mathbf{r},t)

    • Compare spatial patterns against precipitation and known aquifer properties.

  4. Parameter identifiability

    • Which parameters trade off most strongly (e.g., GrefG_{\text{ref}} vs α\alpha, SskS_{sk} vs β\beta)?

    • Use posterior sampling (MCMC) on a single column to visualize uncertainty.


11) Practical implementation notes

Numerical stability tips


12) Limitations and extensions

Limitations

Extensions


References (papers driving the framework)